524Uploads
219k+Views
118k+Downloads
Design, engineering and technology
Renewable energy debate
Structured class debate on the location of a new wind farm
There is much debate about the issues created by carbon emissions and how renewable energy sources can help resolve these challenges. Most people agree that renewable energy is a good thing, but many oppose to having wind turbines built near their neighbourhood.
In this role-play activity, participants take on different roles to debate a proposed wind farm. In pairs, students discuss whether their character would be in favour of the proposed wind farm and prepare a two-minute talk to share their case with the group.
Afterwards, divide the larger groups into ‘for’ and ‘against’ and bring together all the individual statements to form a strong, coherent case. Four people are chosen to give two reasons to support their argument.
Activity info, teachers’ notes and curriculum links
This activity has been written with a strong science bias. However, it can easily be taught in design and technology with either a systems and control approach or from a ‘sustainability’ angle, looking at the topic of wind farms and the future of energy production. The ‘sustainability’ perspective will provide an activity that could involve design and technology, geography and citizenship.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your classroom learning highlights with us @IETeducation
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Engineering prosthetics
Discuss the work of medical engineers and the use of smart materials for prosthetics
The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts.
Activity info, teachers’ notes and curriculum links
This activity is a quick, engaging introduction to a lesson looking at the properties of modern materials. With the help of a series of short videos ‘Nature Reinvented’, ‘Prosthetic design’ and ‘Bionic Limbs’, students make the connection between materials, prosthetics and the way in which engineers work.
The activity sheet includes teachers’ notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
How does a Sat Nav system work?
Learn about the technology behind satellite navigation systems and discuss the pros and cons of using them
Can your students consider how a GPS system functions and discuss the advantages and disadvantages of using them?
This activity is suitable for KS3 and KS4 and encourages students to undertake research and produce a visual display.
This activity is an engaging investigation into the uses of communication technology in the modern world.
This activity is an individual activity and could be run in an ICT suite to allow students to use the internet for research.
Distribute the Sat Nav handout to students. This handout gives some outline information about satellites and an un-annotated diagram. Students can cut out or copy the un-annotated diagram and add information to this to produce a visual display of how a Sat Nav system works.
There are a series of questions on the Sat Nav handout. Questions 1-4 are designed to get students to undertake research on the topic of satellites and their functionalities and capabilities.
This is a simple activity that will take approximately 30 minutes to complete.
How does a Sat Nav system work?
What we often refer to as ‘Sat Nav’ is properly called the Global Positioning System (GPS). This uses satellites that continually transmit a signal. They are like an accurate orbiting clock. The signal from at least three and up to seven satellites is received and compared by the Sat Nav device. Using some complicated maths, the Sat Nav device can work out not only where it is on the Earth’s surface, but at what altitude it is as well. The position information is compared with a map downloaded and stored by the Sat Nav device. The satellites tell you where you are, and the mapping hardware fills in the pictures of the road around you.
The satellites need to have a clear path through the air to the Sat Nav device – this is normally called a clear line of ‘sight’.
The engineering context
Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives.
Download the free How does a Sat Nav system work? activity sheet!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Changing perceptions with design
Developing a marketing and branding campaign for Pure Water
An essential part of a product’s identity is the logo that is used to represent it. In this activity, students will work on developing a ‘marketing and branding’ campaign for a drinking water product by Pure Water. The campaign will need to design the overall package for the scheme, including logos, slogans, adverts, podcasts, posters etc. As a class, brainstorm what the essential criteria are for an effective logo. Then participants generate a range of ideas select their best idea and develop this in a suitable form.
Activity info, teachers’ notes and curriculum links
This activity requires participants to apply understanding of creative thinking, product development and graphic design to a design and technology context.
Download the free activity sheet!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your classroom learning highlights with us @IETeducation
Tools/resources required
Projector/whiteboard
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
To watch the ‘Pure water’ video, please visit the IET Education website.
Changing perceptions with design 2
An engaging activity in which students will develop a marketing strategy and advertising materials for the product. It will be taught through teamwork mirroring the design process within a ‘design consultancy.’ Each team will pitch for the tender at the end of the unit, presenting ideas to the class. This activity could be taught in design & technology, with the emphasis on product design or graphics.
Engineered materials
This activity focuses upon how materials have been specifically engineered to provide certain qualities and characteristics. Learners will explore a range of engineered, synthetic, and smart materials, identifying why they are ‘fit for purpose’ and how they have been engineered to achieve this purpose.
Children will delve into learning about the chemical, physical and mechanical properties of their chosen material. Not only will they learn about what the material looks like, both visually and at a molecular level, but also what it was designed to do, how it’s made, what it’s used for, and if its function has evolved over time.
This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT).
Activity: Researching a specifically engineered material
Students will work in pairs to conduct research on a specific engineered material. They’ll be tasked with creating a fact sheet or PowerPoint presentation covering all aspects of their chosen material. This includes its chemical, physical and mechanical properties, its appearance, its intended purpose, its manufacturing process, its composition, its applications, and any evolution in its function. The completed projects can then be used as a wall display or presented to the rest of the class, promoting a collaborative learning environment.
The engineering context
By understanding the process of engineering materials, students can appreciate the real-world implications of engineering. This activity will help them see the creativity, problem-solving, and innovation involved in engineering, inspiring them to consider a career in this exciting field. It also emphasizes the importance of engineering in our daily lives, showcasing how man-made materials contribute to various industries and applications.
Suggested learning outcomes
Learners will gain a deeper understanding of how materials can be designed and made for specific characteristics and purposes. They’ll be able to identify the properties of materials required for a particular function and explore a range of engineered materials, understanding why and how they have been developed. This activity not only enhances their knowledge of science, design, and technology but also nurtures their research, presentation, and teamwork skills.
Download our activity sheet for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
Engineers can read your mind
Explore the different technologies that engineers have developed to scan the brain
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics.
Activity info, teachers’ notes and curriculum links
This activity encourages students to think about new technologies and how difficult it is to predict their future development and application. The handout ‘Reading minds’ is an introduction on how the engineering field of biomedical signal processing is helping doctors understand the brain and treat patients.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
The ‘Mind Scanner’ challenge is an extension activity that allows students to do a bit of future gazing. The challenge looks at how future compact mind scanner technology could be used and by whom - considering both ethical and economic issues.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Medical imaging
A closer look at the techniques used to scan brain tissue
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics.
Activity info, teachers’ notes and curriculum links
An engaging starter activity making use of the short film ‘Mind Mapping’ (see related resources section below) and encouraging students to think about new technologies and how difficult it is to predict their future development and application. Students consider how engineers have created different and safe techniques of scanning brain tissue.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Microwaves and health
Explore the risks associated with exposure to microwaves
Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives.
Activity info, teachers’ notes and curriculum links
This engaging activity allows students to explore the hazards and risks associated with exposure to microwaves. A microwave monitor is used to measure the microwave radiation from a microwave oven and a working mobile phone at a range of distances.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Learning more about programmable systems
Students discuss what they do and don’t know about programmable systems
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error.
In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz.
Activity info, teachers’ notes and curriculum links
In this activity, learners will self-assess and plan how to extend their current knowledge of programmable systems.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Aerodynamics in action
Through this fun and engaging STEM activity, learners will understand how aerodynamic and streamlined shapes are used in our day to day lives and the design, technology, and engineering principles behind them.
This is a free resource aimed at secondary school children. Students will have the opportunity to learn about aerodynamic forces and aerodynamic design and how these design principles enhance speed and efficiency in a product. A brilliant engineering activity for kids.
Students will start to understand the basic principles of aerodynamics by looking at familiar products that have been designed with ‘speed’ in mind and through identifying features common to these products.
Later, they could start to explore the requirements of aerodynamic design through testing simple shapes in a wind tunnel and through water. The activity focuses on students acquiring an understanding of aerodynamics through testing, experimenting, and developing.
This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project. However, it can also be tackled independently from each subject.
What do the images have in common? Why have they been designed in that shape? Could they be split into themed groups?
As an extension students could be asked to consider the social/economic and technological benefits (and drawbacks) of each example. This will give some reasoning behind the development of the final design and illustrate how there are many different factors affecting the design.
The engineering context
Aerodynamics refers to the way air moves around things. Anything that moves through the air reacts to aerodynamics. Aerodynamics acts on aeroplanes, rockets, kites and even cars!
Suggested learning outcomes
By the end of this activity students will be able to identify areas where aerodynamics is used in real life and they will be able to describe the social/economic and technological effect of the work.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Easter vacuum forming project for KS3
Use vacuum forming to make chocolate egg moulds
In this Easter STEM project students will learn about the vacuum forming process and its applications. They will learn how to use a vacuum forming machine to produce a mould that they can then use to cast a handmade chocolate Easter egg.
This challenge is aimed at secondary school students and could be used as a main lesson activity to teach learners about the use of vacuum forming, or as part of a wider scheme of learning covering either manufacturing processes and techniques or the integration of different disciplines within Design and Technology.
This is one of a set of free STEM resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology, Science and Mathematics. This resource focuses on using the vacuum forming process to create a mould for a chocolate Easter egg.
Please note that this activity requires access to a workshop for vacuum forming and appropriate facilities for hygienic food preparation, such as a food technology room.
In many school workshops there will only be one or two vacuum forming machines available for use. In this instance learners will need to take turns in using this equipment. They could be split into small groups to make this process less time consuming.
This is a fun and engaging Easter STEM challenge and will take approximately 50-80 minutes to complete.
Chocolate Easter Eggs
Although chocolate was introduced to Europe in 1502, it was initially just made into drinks, like cocoa. Chocolate Easter eggs were first made in France and Germany in the 19th Century. The first chocolate egg in the UK was made in 1873 by J S Fry and Sons Limited. One of the challenges with making these eggs was to form their shape.
Tools/resources required
Half egg-shaped former
Suitable material for forming, such as high impact polystyrene (HIP)
Vacuum forming machine
Stanley knife or other cutting tool suitable for trimming the edges of the formed plastic mould
Chocolate for melting (either cooking chocolate or milk chocolate bars work well)
The engineering context
Engineers use vacuum forming for manufacturing a wide range of products, such as storage containers, children’s toys, baths, and food packaging.
Suggested learning outcomes
By the end of this exercise students will have an understanding of the main stages of the vacuum forming process. They will also be able to use the vacuum forming process to create a mould for a chocolate Easter egg. Lastly, they will be able to cast a chocolate easter Egg from a vacuum formed model.
Download the free activity sheets, along with a fun bonus crossword using the words from the activity to enhance learning.
All activity sheets and supporting teacher notes, presentation and curriculum links are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Create a Christmas mobile
Get creative with crafts this Christmas and build a beautiful mobile inspired by the winter holidays
A versatile lesson for teaching about constructing robust structures and the principles of balance. It can be incorporated into a broader curriculum on design and technology, emphasising making and assembly skills.
Learners will be encouraged to collect a variety of natural materials that they can use to craft a Christmas mobile. This homemade mobile will make a great sustainable Christmas decoration for the home or classroom.
This is one of a series of free STEM resources designed to allow students to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology, and Engineering.
The IET Education resource: Homemade Christmas decoration can be combined with this activity to create one of the hanging ornaments.
The time and resources required for this activity will vary depending on the types and quantities of decorations. We recommend using one of the following suggestions to make your mobile:
Fir/pine cones - Cones that have been collected previously and allowed to dry out are the best. They take paint well if dry and can look effective with decoration. Keep the hanging loops long.
Small fir trees - These are simple to construct.
Clay star - This will be a heavy element for the mobile. The impact of different weights on the mobile should be considered. Bolts do not have to be used if not available.
Pipe cleaner star - Learners may need additional assistance with measuring the length of the pipe cleaner to split it into five.
Using natural materials will give a unique, designer effect, but shop-bought decorations can be mixed in if time is short.
Suggested learning outcomes
By the end of this activity, students will be able to understand what makes a structure strong, they will be able to understand the concept of balancing, and they will be able to make a strong, well-balanced and visually attractive Christmas mobile.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your inspiring creative crafts with us @IETeducation! #SantaLovesSTEM.
https://education.theiet.org/primary/teaching-resources/create-your-own-winter-mobile/
How safe is personal transport?
Discuss safety issues in personal transport and analyse data to work out which form of personal transport is currently the least safe
Personal transport is becoming safer as technological advancements are made and more and more safety features are designed. In this fun STEM activity students will consider what safety features are in use today.
Students will first name some personal transport methods, including those they use. In pairs they can discuss any safety features of these methods, why they are important and then they will rank the transport systems in order of how safe they think they are.
The ‘Safety statistics A’ handout includes a chart which shows the proportion of reported road casualties by road user type and severity in Great Britain in 2012. The students will then interpret the data and write down what it shows. They can then compare this to the ranking they did in the discussion earlier. The handout shows that car occupants and pedestrians are the most common types of road casualties.
How do you think safety can by improved for car occupants and pedestrians? Ask the students to think about what safety measures already exist and then ask them to think about what features cars should have in the future.
This engaging activity that is the perfect way for KS3 students to develop their critical thinking skills.
How long will this activity take? Approximately 30-59 minutes to complete.
The engineering context
Car and road safety engineers are professionals who are responsible for designing and developing vehicles and road systems that are safe for drivers, passengers, and pedestrians. They work on various aspects of vehicle and road safety, including crash testing, airbag seatbelt development, pedestrian protection, and traffic control systems. These engineers use their knowledge of physics, mechanics, and materials science to develop innovative solutions to improve vehicle and road safety. They also work closely with government agencies, automakers, and other organisations to develop and enforce safety regulations and standards. The work of car and road safety engineers is vital to ensuring the safety of drivers, passengers, and pedestrians on our roads.
Suggested learning outcomes
By the end of this activity students will be able to interpret data from a chart, discuss the importance of safety features in personal transport and identify car and road safety features.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Create a flood warning system
Alert homeowners to the risk of flooding with your prototype
In this free resource, learners will identify the design problems presented by flooding. They will then develop a working flood warning system using the BBC micro:bit.
By engaging in this activity, students will gain valuable knowledge about computing and design principles while having fun at the same time.
This could be used as a main lesson activity. It is an ideal exercise for learners to improve their understanding of basic electronics, develop programming skills, make use of programmable components, and embed intelligence into a product design.
**Tools/resources required **
Projector/Whiteboard
BBC micro:bit system and online programming software
Internet (to access programming software)
PCB development software
Moisture sensors and LEDs
Crocodile clips or other wiring options (to attach input and output devices)
PCB or strip board to create homemade moisture sensors and/or potential divider circuits
PCB production facilities (etch tank or CAM router)
What is the BBC micro:bit?
The BBC micro:bit is a great way to get kids interested in computing. It is a small, programmable computer that can be used to create a wide variety of activities and projects. It is a powerful teaching and learning tool that helps learners develop their own systems and learn the basics of coding. It is an ideal tool for introducing children to programming concepts in a fun and engaging way.
The engineering context
This is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at KS3.
It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners.
Suggested Learning Outcomes
By the end of this activity students will understand a block systems diagram of the flood warning system and they will understand the use of a moisture sensor as an input sensor. They will also be able to design a moisture sensor and/or potential divider circuit. Lastly, they will be able to successfully program the BBC micro:bit so that the system meets the design criteria.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Flood prevention strategies
Program a prototype system to alert homeowners flooding risks
The flood prevention strategies activity tasks participants to program a prototype system to alert homeowners flooding risks.
Flooding is becoming increasingly common in parts of the United Kingdom and causes a lot of damage to peoples’ homes. The sooner a potential flood can be detected, the more time homeowners have to prepare and to save their property.
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Damage caused by flooding can have widespread effects on people’s lives, homes, businesses, and agriculture. Authorities aim to provide adequate warnings when the risk of flooding is likely, however this can be challenging.
Activity info, teachers’ notes and curriculum links
In this activity, learners will debate the social impact of flooding and how design and technology could provide solutions to this. They should think about how programmable systems could be used to help homeowners and the authorities respond better and provide earlier and more effective warnings that flooding is likely to occur. They will then develop a working flood warning system using the BBC micro:bit.
Please do share your classroom learning highlights with us @IETeducation
Tools/resources required
Projector/Whiteboard
To watch videos the ‘flood warning system’ and ‘flood engineers’ videos, please visit the IET Education website.
Integrating the bag alarm system
Investigate and apply methods to attach the bag alarm device to a piece of clothing
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day.
In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will design a fully integrated product. They will investigate and apply methods to attach their device to a piece of clothing.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Programming commands
Learning to programme using BASIC language commands
This activity is designed to build on understanding of programming commands and what they are used to do in a program. It requires students to show a detailed knowledge of each command and what it is used to do. It also requires them to apply programming commands in a real context.
Students will engage with the BASIC language commands, understanding their purpose and how they function. They will write their own program to control an LED light, seeing first hand how their code translates into action.
BASIC is a simple programming language that can be used to program electronic systems. It consists of a set of commands that can be used to perform particular functions.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT).
Activity: Learning to programme using BASIC language commands
This activity involves understanding and applying BASIC programming commands. Starting with a discussion about the language and its common commands, students will then predict the functions of commands like ‘high’, ‘low’, ‘goto’, ‘wait’/‘pause’, ‘if’, ‘else’, and ‘stop’. They will put their understanding into practice by writing a program to control an LED light. Reflection on their experience and a question-answer session will round off the activity, consolidating their learning and addressing any queries.
The engineering context
Programming plays a crucial role in engineering, especially with the rise of programmable systems, such as smart devices and autonomous vehicles. By learning to program in BASIC and applying it in a real context, students get a sense of how engineers use programming to create solutions and control systems.
Suggested learning outcomes
Through this beginner activity, students will gain an understanding that programs can be written using programming code. They will learn the purpose and function of a range of BASIC programming commands, and they will also get a chance to write a program using these commands to meet a given design brief. The activity aims to provide students with a solid foundation in programming, equipping them with the skills and knowledge to further explore this vital field.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
Please do share your highlights with us @IETeducation.
Programmable systems of the future
Design a future programmable system to meet user needs
As technology progresses, programmable systems are being increasingly utilised at home and in industry. What will the programmable systems of the future be like and how will we use them? In this activity, students apply what they have learnt about the uses and designs of programmable systems to invent their own to meet a specific user need.
Activity info, teachers’ notes and curriculum links
An engaging activity in which students look to the future and consider what they have learnt so far about programmable systems to design their own that meets a user need.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
How do animals use sound
How sounds travel as waves of different frequencies and wavelengths
From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments.
This engaging STEM activity is aimed at KS3 students and deals with how animals use sounds and how sounds change in natural phenomena. This is so a student can understand how sound waves travel.
The teacher will first distribute a copy of the ‘Animal Sounds’ handout, which can be downloaded below, to each student.
Make sure students understand sound is a longitudinal wave of compressions and rarefactions of the material. Soundwaves follow the laws of wave behaviour, so they are a useful introduction to wave properties.
This activity can be simplified (particularly for less able students) by creating a discussion on why different animals have different hearing ranges and their experience of phenomena such as the Doppler effect.
Use the handout to discuss different sounds and what they might have learned in other lessons (e.g. music) about pitch, frequency, amplitude etc.
As an extension students could produce a display from low to high frequency, showing where the sound ranges used by different animals lie. Students could consider how sounds outside the normal spectrum could be used to develop new products. For example, to make ‘silent’ devices to broadcast sound or data between two points.
This is a quick and simple activity that will take approximately 15 minutes.
The engineering context
Sounds are vibrations travelling through materials. Many animals make sounds, either for communication or for location. Sound travels at different speeds in different materials. Generally, the denser the material, the faster the sound will travel.
Sound is a longitudinal wave of compressions and rarefactions of the material (a rarefaction involves particles in the material being more spread out than usual). Sound waves follow the laws of wave behaviour, so they are a useful introduction to wave properties.
Suggested learning outcomes
By the end of this free resource students will know that sound is produced by objects vibrating and they will understand that sound is a longitudinal wave. They will also know about the range of frequencies that can be heard by humans and other animals and they will understand that sound travels at different speeds in different mediums.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please share your classroom learning highlights with us @IETeducation